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Matched Windows in Circular Waveguide

LAWRENCE CARIN, KEVIN J. WEBB, MEMBER, IEEE, AND
SANDER WEINREB, FELLOW, IEEE

Abstract —Design curves are presented for the matching of a dielectric
window in circular waveguide propagating the dominant TE,, mode. The
matching is accomplished by thick or thin inductive irises which are in
contact with the window on both sides. This configuration gives wide
bandwidth and is mechanically convenient, but requires consideration of
coupling of the higher order modes generated by the closely spaced
discontinuities. Mode matching and the generalized scattering matrix are
utilized.

/

I. INTRODUCTION

Dielectric windows are often required to separate one gas from
another or to provide a vacuum in a waveguide system. The
particular application which prompted this investigation was the
circular waveguide ‘connection of a dual, linearly polarized feed
horn, pressurized with dry nitrogen, to a low-noise receiver which
is cryogenically cooled and therefore must be in high vacuum.

To a first approximation the window presents a capacitive
discontinuity across the equivalent transmission line and there-
fore an inductive iris to parallel resonate the capacitor is sug-
gested. Greater bandwidth should result if an iris is used on each
side of the dielectric. The resulting cross section is shown in Fig.
1, where the five parameters (d, d;, ¢, t;, and ¢,) are defined. The
two irises form a convenient mechanical design for mounting and
sealing the window; the iris on one side is machined into the wave-
guide wall while the iris on the other side is in the form of a ring.
Fine tuning of the frequency of best match can then be achieved
by changing the inner diameter of the ring.

The waveguide system of Fig. 1 will be analyzed using mode
matching [1]-[6] to find the modes excited by each of the four
step discontinuities. The fields excited at each discontinuity can
be expressed in the form of a generalized scattering matrix
[4]-[7]. For the first discontinuity only the dominant TE;; mode
is incident while for subsequent discontinuities a number, N, of
higher order modes (some of which may be propagating depend-
ing on €,) are considered; N must be carefully chosen to give
sufficient accuracy and maintain reasonable computation time.
The series of discontinuities is treated by cascading the gener-
alized scattering matrices [4]-[7] of the individual junctions to
obtain a generalized scattering matrix for the entire system.

In the next section the results of our analysis are presented in a
way useful for the design of matched windows in circular wave-
guides propagating the TE,; mode. This is followed by a summary
of the analysis method and some checks of its validity. A com-
plete description of the analysis method is given in the thesis of
Carin [6].
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Fig. 1. Cross-sectional view of a circular waveguide dielectric window. The
waveguide has diameter d, the iris has diameter &; and thickness ¢;, and the
window has dielectric constant €, and thickness 1.

II. REesuLrs

The two design questions which we attempt to answer in Figs.
2 and 3 are the following: ‘

1) What is the optimum iris inner diameter given the window
thickness, dielectric constant, iris thickness, waveguide di-
ameter, and operating frequency?

2) Given an iris optimized for a given frequency, what is the
frequency response of the window?

The optimum iris diameter was defined to be that dimension
which produced the smallest reflection coefficient (lowest inser-
tion loss) for a given set of parameters. The optimization was
achieved using the subroutine ZXGSP from the IMSL Problem
Solving Software System (1985). The designer is not just inter-
ested in low insertion loss at a fixed frequency, but rather is also
concerned about how the design will perform over the entire
frequency band to be used (frequencies over which single moded
operation is possible). For this reason, the frequency response of
the window is presented for each geometry that was initially
optimized for a single frequency. The figure captions explain the
design curves. To present thé results in a compact manner, it is
necessary to select two ratios of iris to window thickness. All
dimensions are normalized to the waveguide diameter d, and
frequency is normalized to the TE;, mode cutoff frequency
f.=17.58/d where f, is in GHz and d is in cm. The graphs were
computed with a Fortran program on a VAX 11 /785 computer.
For a particular geometry and frequency, it required about 40
seconds of CPU time to calculate the scattering parameters for
the series of step discontinuities in Fig. 1. To find the iris
diameter for which the matching irises were optimal at a given
frequency (Fig. 2), an average of 5 minutes of CPU time was
required per point.
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Fig. 2. Optimum iris diameter as a function of normalized frequency, f/f.. (a)
In each graph the optimum normalized iris diameter, d;/d, is plotted for
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The e{ and h{/) are the normalized mode functions for the G573 74 76 18 2010 T2 2 6 T8 20
electric and magnetic fields, respectively, for mode i in guide j. f/f; /1t

Guide 1 is to the left of the junction and guide 2 to the right of b

the junction. The coefficient a{/’ represents the incident ampli-

. A . C. Fig. 3. (a) Fach graph shows return loss, 20log(|Si;]), as a function of
() g grap s g Lio111)y
tude, and bij , the excited (reﬂeCted) amphtude for mode i in normalized frequency for windows optimized for f/f, =1.1, 1.3, and 1.5.

guide J The wave admittance for mode i in guide j is denoted by The left-hand graphs are for ¢/d = 0.005, and the right-hand graphs are for

K<j)~ The waveguide cross sections in this paper are homoge- t/d =0.02; from top to bottom the dielectric constants are 2.80, 4.55, and

X ok 8.0. For above results, ¢, = . (b) Same as (a) except for the thicker iris case,
neous so that the fields become a superposition of decoupled L =5t (@) excep
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transverse electric (TE) and transverse magnetic (TM) modes. In
this case the wave admittance corresponds to either a TE or a
TM mode. For the TE mode Yy = k, /wp and for the TM mode
Y = we/k,, where k. is the phase constant for the mode in the
z direction, and p and e are the permeability and the permittiv-
ity, respectively. Consider taking inner products with magnetic
mode functions from guide 2 in (1) and with electric mode
functions from guide 1 in (2). After truncating to M modes in
waveguide 1 and N modes in wavegnide 2, the result can be
expressed in matrix form as

K, i _"817‘/ al
p=1, 9N: p=1!”'3N !
=1, ',M: I=1,---,N
e Tt T —
Y;J(Usp.l ! Y/(Z)Lp.l )
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where
Kp~,=‘/ eV X kD - ds, 4

1

L =] &V Xh? ds 5
'p. 1 ‘[S‘l P ! 1 ( )
and i=1,---,M and j=1,---, N. The generalized scattering
matrix of the step discontinuity is

(6)

where S, S;3, S, and S,, are M XM, M XN, N XM, and
N X N matrices, respectively, and X, and X, are as defined in
3).

The above formulation is valid for any waveguide system for
which there is a step discontinuity. This paper concentrates on
step discontinuities in circular waveguide. The work is simplified
by the fact that the mode functions for circular waveguide, as
well as the inner products, can be expressed in closed form. The
normalized mode functions for circular waveguide are found in
the Waveguide Handbook [9] and the inner products are derived
in Carin’s thesis [6].

As described by Wexler [1], the solution of the step discontinu-
ity converges fastest if the boundary reduction and enlargement
are handled separately. We began by stating that the boundary
conditions to be met at the discontinuity are the continuity of
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tangential electric and magnetic fields across the aperture, as well
as the vanishing of the tangential electric field on the perfectly
conducting obstacle (wall). When the tangential fields are matched
as in (1) and (2), the first boundary condition has been enforced.
To meet the last boundary condition care must be taken. For the
case of boundary reduction, if magnetic mode functions from
guide 2 are used to take inner products with (1), the inner
products support exists only over the smaller guide’s cross sec-
tion. All the integrals are nonzero only over the aperture and not
over the wall. In our study it was determined that this choice of
testing functions yields very slow convergence for the boundary
condition that the transverse electric field be zero on the conduc-
tor, in agreement with Wexler. To have some of the inner
products with support over the junction wall, magnetic mode
functions from the larger guide (guide 1 in this case) are used on
the electric field continuity equation. The same argument holds
for the selection of testing functions for the boundary enlarge-
ment case; i.e., magnetic mode functions from the larger guide
(guide 2) are again used on the electric field continuity equation.
Using the above discussion as a guideline, it is seen that (3), (4),
and (5) correspond to a boundary enlargement discontinuity.

One might initially attempt to use transmission matrices to
describe each step and then cascade these matrices to determine
the total transmission matrix for the series of step discontinuities.
This transmission matrix can then be converted to the more
common scattering matrix. The problem with this approach is
that for many geometries the exponertial factor associated with
the evanescent modes will lead to numbers that exceed the
available numerical range of the computer. A method of cascad-
ing generalized scattering matrices that alleviates this problem
has been developed by Chu and Itoh |7]. A composite scattering
matrix is then generated that describes the series of steps.

The way in which the number of modes in the continuity
equations of electric and magnetic fields ((1) and (2)) are trun-
cated is often of importance. Assume M modes in guide 1 (left of
junction) and N modes in guide 2 (right of junction) are retained
in the summations. Investigations on the rate on convergence for
different values of M and N have been reported by other
authors [2]-{4]. Based on these results it is concluded that the
convergence rate is improved when M/N corresponds to the
ratio of the cross-sectional areas of the waveguides on either side
of the junction. In other words, for the circular waveguide
considered here, M/N=r?/r} (to the closest integer) with r
and r, the radii of guide 1 and 2, respectively. It was determined
in our study of circular waveguides that the convergence rate of
the reflection coefficient was not very sensitive to the ratio
(M/N) used in the field expansion as long as the number of
modes, M and N, were sufficiently large (N = M =10). This is in
agreement with English [3], who shows that the reflection coeffi-
cient converges sufficiently after ten modes for step sizes com-
parable to those considered in this paper. Although it was found
that the reflection coefficient converged fastest when M /N corre-
sponded to the ratio suggested in the literature and stated above,
it was not sufficiently faster to warrant using this ratio as
opposed to simply using an equal number of modes (M = N =10)
on each side of the discontinuity. This was because the discon-
tinuities encountered in this work were relatively small, but as the
difference in cross-sectional area between the guides increases,
the number of modes needed to express the fields in the larger
guide increases. Thus, it becomes numerically efficient to opti-
mize the ratio M/N as the difference in the cross-sectional areas
of the two guides increases so that fewer total modes will be
needed in the field expansion.
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Fig. 4. Comparison of theoretical results of this paper with experimental
results of Ragan [10] for a single, thick inductive iris with d =23.8 mm,
d,/d = 0.60, and f =9.375 GHz. The magmntude of the reflection coefficient
is shown as a function of normalized iris thickness, ¢ /d.
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Fig. 5. Comparison of measured data with theory presented in this paper for

a rexolite window with ¢ =1.02 1n, d, = 0.855 1, + = 0025 in, and ¢, = 0.031
in. The points represent the experiment, the curve, theory.

IV. VERIFICATION OF THEORY

For the cascade of circular waveguide step discontinuities there
is a scarcity of data with which to compare. Ragan [10] presents
some experimental results for the inductive iris in a circular
waveguide. Ragan gives an equivalent circuit model with parame-
ter values obtained from experimental results. He makes a com-
parison between the experimental data and theory for small holes
in an infinitesimally thin iris. The results show that this theory
has severe limitations when the size of the hole becomes large
relative to the iris thickness. The iris consists of two step discon-
tinuities, from left to right, a diameter reduction and diameter
enlargement, separated by a homogeneous circular waveguide.
Using the theory of the previous section, the two steps are
modeled with generalized scattering matrices and then cascaded
using the transmission matrix of the interconnecting circular
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waveguide. The theoretical results, in the form of reflection
coefficient, are found to be in excellent agreement with Ragan’s
experimental data, as shown in Fig. 4.

An experiment was carried out for a Rexolite (¢, =2.54)
window with d =1.02 in, d, = 0.855in, t = 0.025in, and ¢, = 0.031
in. The theoretical results show good agreement with experimen-
tal results, as shown in Fig. 5.
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A New Lock Indicator Circuit for Microwave and
Millimeter-Wave Phase Locked Loops

JORDI BERENGUER I SAU, MEMBER, IEEE

Abstract — A new circuit useful as a lock detector in microwave PLL
systems has been developed. This circuit avoids the quadrature phase
detector or coherent amplitude detector commonly used as a lock indicator
in PLL’s, thereby reducing the microwave circuitry and components. It is
based on the properties of the phase error signal coming from the phase
detector; a frequency-voltage conversion is performed on it in a low-
frequency (secondary) PLL, the input to which is the output of the phase
detector in the main (microwave) PLL. The secondary VCO control signal
gives, after a comparison, a logic level related to the lock condition in the
main (microwave) PLL.

I. INTRODUCTION

In the development of microwave and millimeter-wave phase
locked loops, where the phase detection is made at very high
frequencies with conventional microwave mixers (analog multi-
pliers), an indication of the lock condition requires the use of an
additional phase detector where the VCO signal is fed through a
90° phase shifter (Fig. 1) [1]. This increases the system complex-
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