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Short Papers

Matched Windows in Circular Waveguide

LAWRENCE CARIN, KEVIN J. WEBB, MEMBER, IEEE, AND

SANDER WEINREB, FELLOW, IEEE

Abstract — Design curves are presented for the matching of a dielectric

window in circular waveguide propagating the dominant ‘H I,, mode. The

matchkg is accomplished by thick or thin inductive irises which are in

contact with the window on both sides. This configuration gives wide

bandwidth and is mechanically convenient, but requires consideration of

coupling of the higher order modes generated by the closely spaced

discontinuities. Mode matching and the generalized scattering matrix are
utilized.

I. INTRODUCTION

Dielectric windows are often required to separate one gas from

another or to provide a vacuum in a waveguide system. The

particular application which prompted this investigation was the

circular waveguide connection of a dual, linearly polarized feed

horn, pressurized with dry nitrogen, to a low-noise receiver which

is cryogenically cooled and therefore must be in high vacuum.

To a first approximation the window presents a capacitive

discontinuity across the equivalent transmission line and there-

fore an inductive iris to parallel resonate the capacitor is sug-

gested. Greater bandwidth should result if an iris is used on each

side of the dielectric. The resulting cross section is shown in Fig.

1, where the five parameters (d, di, t, t,, and c,) are defined. The

two irises form a convenient mechanical design for mounting and

sealing the window; the iris on one side is machined into the wave-

guide wall while the iris on the other side is in the form of a ring.

Fine tuning of the frequency of best match can then be achieved

by changing the inner diameter of the ring.

The waveguide system of Fig. 1 will be analyzed using mode

matching [1]–[6] to find the modes excited by each of the four

step discontinuities. The fields excited at each discontinuity can

be expressed in the form of a generalized scattering matrix

[4]-[7]. For the first discontinuity only the dominant TEII mode

is incident while for subsequent discontinuities a number, N, of

higher order modes (some of which maybe propagating depend-
ing on c,) are considered; N must be carefully chosen to give

sufficient accuracy and maintain reasonable computation time.

The series of discontinuities is treated by cascading the gener-

alized scattering matrices [4]–[7] of the individual junctions to

obtain a generalized scattering matrix for the entire system,

In the next section the results of our analysis are presented in a

way useful for the design of matched windows in circular wave-

gtides propagating the TEII mode. This is followed by a summary

of the analysis method and some checks of its validity. A com-

plete description of the analysis method is given in the thesis of

Carin [6].
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Fig. 1. Cross-sectional view of a circular waveguide dielectric window. The

waveguide has diameter d, the iris has diameter d, and thickness t,, and the

window has dielectric constant c, and thickness t.

II. ~SULTS

The two design questions which we attempt to answer in Figs.

2 and 3 are the following:

1) What is the optimum iris inner diameter given the window

thickness, dielectric constant, ins thickness, waveguide di-

ameter, and operating frequency?

2) Given an iris optimized for a gjven frequency, what is the

frequency response of the winc~ow?

The optimum iris diameter was defined to be that dimension

which rxoduced the smallest reflection coefficient (lowest inser-.
tion loss) for a given set of parameters. The optimization was

achieved using the subroutine ZXGSP from the IMSL Problem

Solving Software System (1985). The designer is not just inter-

ested in low irmertion loss at a fixed frequency, but rather is also

concerned about how the design will perform over the entire

frequency band to be used (frequencies over which single moded

operation is possible). For this reason, the frequency response of

the window is presented for each geometry that was initially

optimized for a single frequency. The figure captions explain the

design curves. To present the results in a compact manner, it is

necessary to select two ratios of iris to window thicl&ess. All

dimensions are normalized to the waveguide diameter d, and

frequency is normalized to the TE,II mode cutoff frequency

~,= 17.58/d where ~C is in GHz and d is in cm. The graphs were

computed with a Fortran program on a VAX 11/785 computer.

For a particular geometry and frequency, it required about 40

seconds of CPU time to calculate the scattering parameters for

the series of step discontinuities in Fig. 1. To find the iris

diameter for which the matching irises were optimal at a given

frequency (Fig. 2), an average of 5 minutes of CPU time was

required per point.
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Fig. 2. Optimum iris diameter as a function of normalized frequency, ~/~.

In each graph the optimum normalized iris diameter, d, /d, is plotted for

four different values of normalized window thickness t/d.The left graphs

are for iris thickness t, = t, and the right graphs are for t, = 5t, and from top

to bottom the dielectric constants are 2.80 (Mylar), 4.55 (quartz), and 8.0

(glass).

III. MODE MATCHING FORMULATION

Mode matching has been used extensively to analyze wave-

guide discontinuities [1]–[6]. The technique is reviewed here and

key points relevant to this work are discussed. A generalized

scattering matrix [4]–[7] is developed which handles an arbitrary

number of propagating and evanescent modes incident from both

sides of the discontinuity.

The transverse fields are expressed at the junction (z= O) as a

superposition of modes and the continuity of transverse electric

and magnetic fields is applied:

and

The ef ) ) and h~J) are the normalized mode functions for the

electric and magnetic fields, respectively, for mode i in guide j.

Guide 1 is to the left of the junction and guide 2 to the right of

the junction. The coefficient aj~) represents the incident ampli-

tude, and bj~), the excited (reflected) amplitude for mode i in

guide j. The wave admittance for mode i in guide j is denoted by

~(~). The waveguide cross sections in this paper are homoge-

neous so that the fields become a superposition of decoupled
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Fig. 3. (a) Each graph shows return loss, 20 log ( ISI, l), as a function of

normalized frequency for windows optimized for f/~, = 1.1, 1.3, and 1.5.

The left-hand graphs are for f/d = 0,005, and the right-hand graphs are for

t/d = 0.02; from top to bottom the dielectric constants are 2.80, 4.55, and

8.0. For above results, t, = t. (b) Same as (a) except for the thicker iris case,

t, = 5t.
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transverse electric (TE) and transverse magnetic (TM) modes. In

this case the wave admittance corresponds to either a TE or a

TM mode. For the TE mode YT~ = k= /mP and for the TM mode

YT~ = ~c/kz, where k: is the phase constant for the mode in the

z direction, and p and c are the permeability y and the permittiv-

ity, respectively. Consider taking inner products with magnetic

mode functions from guide 2 in (1) and with electric mode

functions from guide 1 in (2). After truncating to M modes in

waveguide 1 and N modes in wavegnide 2, the result can be

expressed in matrix form as

where

K I
p,l –8P,,

~=l,. . . ,Ni P=~,...,N

1=1,... ,M~ 1=1,. ... N
———————————————————

Y:%p , / ~(2)LP ~

p=l,. ... M~ P=l,. ..’, M

[=1,..., M; 1=1,..., N

.

xl
\ .1

—

a

–Kp,, ; 8P,[

P=l,. . . ,Ni p=~,. ... N

[=1,. . . ,M~ 1=1,. ... N

p=l,. ...M] p=l,. ... fw
1=1,..., M! 1=1,..., N

@l)

—

+2)

X2 [.
————.——

b

JKp,, = e)l) X hf). dsl
s,

JLP,, = e$) X hf2). dsl
SI

and i=l,. .-, M and j=l,. ... N. The generalized

matrix of the step discontinuity is

(3

(4)

(5)

scattering

(6)

where S1l, S12, S21, and $2 are MXM, MxN, NxM, and

N x N matrices, respectively, and Xl and X2 are as defined in

(3).

The above formulation is valid for any waveguide system for

which there is a step discontinuity. This paper concentrates on

step discontinuities in circular waveguide. The work is simplified

by the fact that the mode functions for circular waveguide, as

well as the inner products, can be expressed in closed form. The

normalized mode functions for circular waveguide are found in

the Waveguide Handbook [9] and the inner products are derived

in Carin’s thesis [6].

As described by Wexler [1], the solution of the step discontinu-

ity converges fastest if the bound~ reduction and enlargement

are handled separately. We began by stating that the boundary

conditions to be met at the discontinuity are the continuity of
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tangential electric and magnetic fields across the aperture, as well

as the vanishing of the tangential electric field on the perfectly

conducting obstacle (wall). When the tangential fields are matched

as in (1) and (2), the first boundary condition has been enforced.

To meet the last boundary condition care must be taken. For the

case of boundary reduction, if magnetic mode functions from

guide 2 are used to take inner products with (l), the inner

products support exists only over the smaller guide’s cross sec-

tion. All the integrals are nonzero only over the aperture and not

over the wall. In our study it was determined that this choice of

testing functions yields very slow convergence for the boundary

condition that the transverse electric field be zero on the conduc-

tor, in agreement with Wexler. To have some of the inner

products with support over the junction wall, magnetic mode

functions from the larger guide (guide 1 in this case) are used on

the electric field continuity equation. The same argument holds

for the selection of testing functions for the boundary enlarge-

ment case; i.e., magnetic mode functions from the larger guide

(guide 2) are again used on the electric field continuity equation.

Using the above discussion as a guideline, it is seen that (3), (4),

and (5) correspond to a boundary enlargement discontinuity.

One might initially attempt to use transmission matrices to

describe each step and then cascade these matrices to determine

the total transmission matrix for the series of step discontinuities.

This transmission matrix can then be converted to the more

common scattering matrix. The prob Iem with this approach is

that for many geometries the exponential factor associated with

the evanescent modes will lead to numbers that exceed the

available numericaf range of the computer. A method of cascad-

ing generalized scattering matrices that alleviates this problem

has been developed by Chu and Itoh 17]. A composite scattering

matrix is then generated that describes the series of steps.

The way in which the number of modes in the continuity

equations of electric and magnetic fields ((1) and (2)) are trun-

cated is often of importance. Assume M modes in guide 1 (left of

junction) and N modes in guide 2 (right of junction) are retained

in the summations. Investigations on t he rate on convergence for

different values of M and N have been reported by other

authors [2]–[4]. Based on these results it is concluded that the

convergence rate is improved when M/N corresponds to the

ratio of the cross-sectionaf areas of the wave.guides on either side

of the junction. In other words, fcr the-circular waveguide

considered here, M/N = rj/r22 (to the closest integer) with rl

and r2 the radii of guide 1 and 2, respectively. It was determined

in our study of circular waveguides that the convergence rate of

the reflection coefficient was not very sensitive to the ratio

(M/N) used in the field expansion as long as the number of

modes, M and N, were sufficiently large (N= M = 10). This is in

agreement with English [3], who shows that the reflection coeffi-

cient converges sufficiently after ten modes for step sizes com-

parable to those considered in this paper. Although it was found

that the reflection coefficient converged fastest when M/N corre-

sponded to the ratio suwested in the literature and stated above,.-
it was not sufficiently faster to warrant using this ratio as

opposed to simply using an equal number of modes ( M = N =10)

on each side of the discontinuity. This was because the discon-

tinuities encountered in this work were relatively small, but as the

difference in cross-sectional area between the guides increases,

the number of modes needed to express the fields in the larger

guide increases. Thus, it becomes numerically efficient to opti-

mize the ratio M/N as the difference in the cross-sectional areas

of the two guides increases so that fewer total modes will be

needed in the field expansion.
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Fig, 4, Comparison of theoretical results of this paper with experimental

results of Ragan [10] for a single, thick inductive iris with d = 23.8 mm.

cl, /d= 0.60. aud f = 9.375 GHz. The magmtude of the reflection coeffmient

is shown as a function of normalized ms thickness, t/d.
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Fig, 5, Comparison of measured data with theory presented in this paper for

a rexolite window with d = 1.02 m, d, = 0.855 m, t = O 025 in, and t,= 0.031
m. The points represent the experiment, the curve, theory.

IV. VERIFICATION OF THEORY

For the cascade of circular waveguide step discontinuities there

is a scarcity of data with which to compare. Ragan [10] presents

some experimental results for the inductive ins in a circular

waveguide. Ragan gives an equivalent circuit model with parame-

ter values obtained from experimental results. He makes a com-

parison between the experimental data and theory for small holes

in an infinitesimally thin iris. The results show that this theory

has severe limitations when the size of the hole becomes large

relative to the iris thickness. The ins consists of two step discon-

tinuities, from left to right, a diameter reduction and diameter

enlargement, separated by a homogeneous circular waveguide.

Using the theory of the previous section, the two steps are

modeled with generalized scattering matrices and then cascaded

using the transmission matrix of the interconnecting circular

waveguide. The theoretical results, in the form of reflection

coefficient, are found to be in excellent agreement with Ragan’s

experimental data, as shown m Fig. 4.

An experiment was carried out for a Rexolite (c, = 2.54)

window with d =1.02 in, d, = 0.855 in, t= 0.025 in, and t,= 0.031

in. The theoretical results show good agreement with experimen-

tal results, as shown in Fig. 5.
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A New Lock Indicator Circuit for Microwave and

Millimeter-Wave Phase Locked Loops

JORDI BERENGUER I SAU, MEMBER, IEEE

Abstract — A new circuit useful as a lock detector in microwave PLL
systems has been developed. This circuit avoids the quadrature phase

detector or coherent amplitnde detector commonly used as a lock indicator

in PLL’s, thereby reducing the microwave circuitry and components. It is

based on the properties of the phase error signal coming from the phase

detector; a frequency-voltage conversion is performed on it in a low-

frequency (secondary) PLL, the input to which is the output of the phase

detector in the main (microwave) PLL. ‘flte secondary VCO control signal
gives, after a comparison, a logic level related to the lock condition in the

main (microwave) PLL.

I. INTRODUCTION

In the development of microwave and millimeter-wave phase

locked loops, where the phase detection is made at very high

frequencies with conventional microwave mixers (analog multi-

pliers), an indication of the lock condition requires the use of an

additional phase detector where the VCO signal is fed through a

90° phase shifter (Fig. 1) [1]. This increases the system complex-
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